If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-18x=81
We move all terms to the left:
9x^2-18x-(81)=0
a = 9; b = -18; c = -81;
Δ = b2-4ac
Δ = -182-4·9·(-81)
Δ = 3240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3240}=\sqrt{324*10}=\sqrt{324}*\sqrt{10}=18\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-18\sqrt{10}}{2*9}=\frac{18-18\sqrt{10}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+18\sqrt{10}}{2*9}=\frac{18+18\sqrt{10}}{18} $
| 9x-34=4x-1 | | 3a-8=5a-14 | | (5^2x+3)+2=27 | | -8(n+7)+3(3n-3)=4 | | 5^2x+3=27 | | 9d-3=4d-33 | | 54=0.1r | | -4y=-20+52 | | -22-27=-7w | | -5c=-29-6 | | -7b=-15+50 | | 3m=-17+11 | | -30+16=7x | | (7-x)^2=37 | | 4.5=0.9h | | 6j=23+31 | | -3p=-14+26 | | 10+14=8r | | 6w=1080 | | X^3-7x-18=0 | | (9x+16)=(5x-14)+90 | | x(4-2x)=2(2x-8) | | 18.75=3b^2 | | 12.x-5=55+5 | | -3x+24=-3 | | 16x+5+50=180 | | 9(3x+2)=33(12+x) | | 9(3x+2)=33(12-x) | | 10.402.50=9500+9500r | | 13x-3x+6x+68=180 | | x/2/5=1/2 | | -16(-2)+4y=8 |